A generation mechanism for chorus emission
نویسنده
چکیده
A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO) regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2±10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.
منابع مشابه
Electron hybrid code simulation of whistler-mode chorus generation with real parameters in the Earth’s inner magnetosphere
We carry out a self-consistent simulation of the generation process of whistler-mode chorus by a spatially one-dimensional electron hybrid code, by assuming the magnetic field inhomogeneity corresponding to L = 4 of the dipole field. Chorus emissions with rising tones are reproduced in the simulation result, while the frequency range, sweep rate, and the amplitude profiles in the spectra of the...
متن کاملRay tracing of whistler-mode chorus elements: implications for generation mechanisms of rising and falling tone emissions
Using a well-established magnetospheric verylow-frequency (VLF) ray tracing method, in this work we trace the propagation of individual risingand fallingfrequency elements of VLF chorus from their generation point in the equatorial region of the magnetosphere through to at least one reflection at the lower-hybrid resonance point. Unlike recent work by Bortnik and co-workers, whose emphasis was ...
متن کاملMagion 5 observations of chorus-like emissions and their propagation features as inferred from ray-tracing simulation
After reviewing briefly the present state of knowledge about chorus-like emissions, we present an overview of Magion 5 satellite observations of these emissions in the inner magnetosphere of the Earth. From the extensive VLF data recorded on board the Magion 5 satellite, we show examples of different types of discrete elements, representing rising and falling tones, and discuss their spectral p...
متن کاملUnique concurrent observations of whistler mode hiss, chorus, and triggered emissions
We present a unique 2 h ground-based observation of concurrent magnetospheric hiss, chorus, VLF triggered emissions as well as ELF/VLF signals generated locally by the High Frequency Active Auroral Research Program (HAARP) facility. Eccentricity of observed wave polarization is used as a criteria to identify magnetospheric emissions and estimate their ionospheric exit points. The observations o...
متن کاملDependence of the Sweep Rate of Whistler-mode Chorus Emissions on the Plasma Density
Whistler-mode chorus consists of intense electromagnetic wave packets generated by a nonlinear mechanism involving wave-particle interactions. Chorus wave packets are discrete frequency-time structures in a frequency range from a few hundreds of Hz to several kHz changing their frequency on a time scale from a few tenths of seconds to a few seconds. The source region of chorus emissions is loca...
متن کامل